Lois et convergence : un bref résumé synthétique

Loi binomiale	Lai bamanni amiitalaa	Lai avmanantialla
(n tirages oui ou non)	Loi hypergéométrique (n tirages sans remise)	Loi exponentielle (Durée de vie sans vieillissement)
X = 1 si succès probabilité p	N boules dont F noires, N-F blanches	La probabilité de durer t au-delà de h
X = 0 si échec probabilité q = 1 - p	X = 1 si noire, n tirages sans remise	= probabilité de durer t .
Pour X	, G	Densité $f(t) = \lambda e^{-\lambda t}$
E(X) = p	Exemple 5 noires , 10 blanches, n=5	Répartition P(t <x)="1" <math="" –="">e^{-\lambda x}</x>
$V(X) = p - p^2 = p(1-p) = pq$	$P(01010) = \frac{10}{15} \frac{5}{14} \frac{9}{13} \frac{4}{12} \frac{8}{11} = P(11000)$	•
Pour $Z = \sum X_i$ (nombre de 1 sur n)	15 14 13 12 11	Espérance $E(t) = \frac{1}{\lambda}$
$P(Z=k)=C_n^k p^k q^{n-k}$ $E(Z) = np$	C_F^{α}	Variance $V(t) = \frac{1}{\lambda^2}$
V(Z) = IIP V(Z) = npq	$P(X=x) = \frac{C_F^x C_{N-F}^{n-x}}{C_N^n}$	Écart type $\sigma(t) = \frac{1}{4}$
$\sigma = \sqrt{npq}$	$\mathbf{F}(\mathbf{X}) = \mathbf{p}$	λ
Pour la fréquence des succès	$V(X) = npq \frac{N-n}{N-1}$	Médiane $\frac{\ln 2}{\lambda}$
$E(\frac{Z}{n}) = p$ $V(\frac{Z}{n}) = \frac{pq}{n}$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	λ
n n		
Loi de Poisson	Loi normale	Loi du KHI2 de Pearson
Évènement aléatoire E dans le temps	La moyenne (E(x)), la médiane et le	
ou l'espace	mode (P(E) max) coïncident. De plus $P(m-2\sigma < X < m+2\sigma) > 95\%$	
Si Δ Z = portion de temps ou d'espace	Densité de probabilité	2
P(E)=pΔZ (P(E) proportionnel à Δ Z)		Loi du χ^2 de Pearson
X =nombre d'événements observés	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-m)^2}{2\sigma^2}}$	On calcule $X=\sum_{i}^{n} \frac{(Oi-Ei)^{2}}{Ei}$
sur Z	$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-2\sigma^2}$	Oi =valeur observée Ei = estimée
Si on pose $m = pZ$ (P(E) sur Z)	Après changement de variable	Le nombre de degrés de liberté est
Si on pose m = pZ (P(E) sur Z) $P(X=x \text{ sur Z}) = \frac{e^{-m}m^x}{r!}$		égal au nombre n de données
×.	$T = \frac{x - m}{\sigma}$ fx dx devient $\frac{1}{\sqrt{2\pi}} e^{-\frac{T^2}{2}} dT$	indépendantes diminué du nombre
E(X) = m V(X) = m	1 = · ·	de relations liant ces données. (Par exemple n–1 si on veut évaluer une
V(X) = 111	Et $\int_{-\infty}^{+\infty} f(T) dT = 1$ d'après Gauss.	moyenne ou si la somme des
De la loi binomiale à Poisson.	Cas général loi N(m,σ) centrée en m	variables = 100).
Soit B(n,p) telle que np = 3 ou 4 .	Médiane = m	Dans un tableau destiné à étudier le
Une succession d'épreuves rapides	Mode = m	croisement de L modalités de A et de
telle que sur ∆t E se produise en	Ecart type = σ	C modalités de B, le nombre de
moyenne 3 ou 4 fois.	P(T < x) donnée par des tables.	degrés de libertés est (L-1)(C-1).
Quand $n \to \infty$ et $p \to 0$ ($np \to m$)	Ne pas oublier que $X = T\sigma + m$ De la loi binomiale à la normale.	l o toblo du khi 2 à k doorte de
	Si n est grand et que p proche de ½.	La table du khi 2 à k degrés de libertés mous indique quel seuil Q ne
	B(n,p) d'écart type σ moyenne np \rightarrow N	doit pas dépasser pour que
	(np,σ)	l'adéquation soit bonne avec telle
	0.25	probabilité. Exemple si Q > 11.07
	Diagramme	l'adéquation a 5% de chances d'être
	en bâtons	bonne. Ce test permet d'estimer
	de B(n,p) et	l'adéquation de la population à une loi

Soit $(X_1, X_2,...,X_n)$ un échantillon de la loi de probabilité de la variable aléatoire X (écart type σ , moyenne m)

Soit la somme: Sn=X1+X2+...+Xn On a

graphe de

 $N(np,\sigma)$

ou à une autre, l'homogénéité ou

l'indépendance de 2 populations.

Et soit $\bar{X} = \frac{Sn}{n}$ la moyenne

$$\mathsf{E}(\overline{X}) = \mathsf{n} \, \frac{E(X)}{n} = \mathsf{E}(\mathsf{X}) = \mathsf{m} \qquad \qquad \mathsf{V}(\overline{X}) = \frac{V(X)}{n} = \frac{\sigma^2}{n} \qquad \qquad \mathsf{\sigma}(\overline{X}) = \frac{\sigma}{\sqrt{n}}$$

Les formules encadrées en rouge sont importantes car selon qu'on s'intéresse à un nombre d'éléments, une moyenne ou une fréquence on va utiliser l'espérance et l'écart type correspondant pour la convergence vers la loi normale.

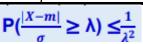
rrequence on valutiliser resperance et recart type correspondant pour la convergence vers la fornormale.			
X nombre d'éléments de caractère λ X = somme de N variables de Bernouilli	\overline{X} est la moyenne de X dans des échantillons de taille N	f fréquence de λ dans l'échantillon si $x = \sum X_i$ (bernouilli) $f = \frac{X}{N}$	
$E(X)=Np$ $\sigma(X) = \sqrt{Npq}$	$E(\overline{X}) = m$ (moyenne ds la population) $\sigma(\overline{X}) = \frac{\sigma}{\sqrt{N}}$	$E(f) = \frac{E(X)}{N} = \frac{Np}{N} = p$ $\sigma(f) = \frac{\sigma(X)}{N} = \frac{\sqrt{Npq}}{N} = \sqrt{\frac{pq}{N}}$	

Loi normale N(m,σ)

X suit la loi N(m, σ) T = $\frac{X-m}{\sigma}$ suit N(0,1)

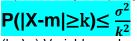
r% risque de l'estimation

Pour N(0,1) les tables donnent A tel que P(T ∈ [-A, A]) ≥ 1 – r% en fonction de 1 – $\frac{r}{2}$ %. Pour r =5% cela donne 1 – $\frac{r}{2}$ % =0,9750 et A =1.96 et donc P(-1,96 < T < 1,96) ≥ 95% On en déduit qu'au risque de 5% m –1,96 σ < X < m +1,96 σ au risque de 1% m –2,53 σ < X < m +2,53 σ

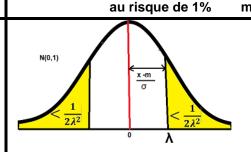


Variable centrée

Bienaymé – Tchebychev
P (écart / moyenne) majorée



(k=λσ) Variable quelconque



Comment choisir n de B(n,p) pour que la fréquence du caractère observé soit telle qu'elle ne s'écarte pas plus de 5% de la fréquence effective au risque de 1%. Pour les fréquences m(f) = p $\sigma(f) = \sqrt{\frac{pq}{n}}$ On a $P(\frac{|X-m|}{\sigma} \ge \lambda = P(|f-p| \ge \sigma\lambda) < \frac{1}{\lambda^2} = 1\%$ d'où $\lambda = 10$ et $\sigma\lambda = 5\% = 10\sqrt{\frac{pq}{n}}$ d'où on tire n quand

Grands nombres

Suite Xi de variables de même loi, espérance, variance alors la moyenne de Xi converge en probabilité vers E(x). m = moyenne dans 'échantillon, S écart type de la moyenne, σ de l'échantillon Dans P(|m -E(x)|≥ ε) ≤ $\frac{s^2}{\epsilon^2}$ on remplace S par sa valeur $\frac{\sigma}{\sqrt{n}}$ puis on passe aux complémentaires P(|m -E(x)|≤ ε) ≥ 1- $\frac{\sigma^2}{n\epsilon^2}$. Cette probabilité tend vers 1 donc quand n grand la moyenne de l'échantillon tend vers E(X) dans la population. Et la fréquence d'un caractère tend vers sa probabilité dans la population.

Limite centrale.

On prélève n valeurs x1,...,xn de moyenne m tandis que dans la population E(x)=M et $\sigma(X)=\sigma$ autrement dit $\sigma(m)=\frac{\sigma}{\sqrt{n}}$ alors la variab

 $\sigma(m) = \frac{\sigma}{\sqrt{n}}$ alors la variable $Z = \frac{m - M}{\sigma(m)}$ tend vers N(0,1)

En particulier B(n,p) converge vers N(np , \sqrt{npq}) lorsque n $\rightarrow \infty$ (Moivre – Laplace). Par exemple X suit la loi B(500,0,8) moyenne 400 et écart type $\sqrt{80}$

500 est assez grand pour qu'on estime que Y = $\frac{X-400}{\sqrt{80}}$ suit N(0,1) La moyenne m de X a pour moyenne 0,8 et pour écart type $\frac{\sigma}{\sqrt{n}} = \frac{\sqrt{npq}}{\sqrt{n}} = 0,4$.

 $Z = \frac{m - 0.8}{0.4}$ suit N(0,1) ce qui permet de chercher dans les tables un encadrement de Z au risque de 5% ou 1%. Et d'en déduire un encadrement de m.

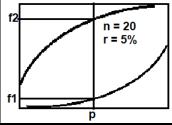
Pour x: M = 800, $\sigma = 60$ Moyenne m de x dans un échantillon de 100 ? E(m) =800, σ (m) = $\frac{\sigma}{\sqrt{N}} = \frac{60}{10} = 6$. $\rightarrow \frac{m-800}{6}$ suit une loi N(0,1) On peut dire que 800 – 1.96 (6) < m < 800 + 1.96 (6) au risque de 5%.

On connait la fréquence de λ dans la population $P(\lambda) = p$ Fréquence dans un échantillon de taille N?

On a E(f) = p et $\sigma(f) = \sqrt{\frac{pq}{N}}$ Si N est grand f suit une loi N(p, $\sqrt{\frac{pq}{N}}$) et donc

 $Z = \frac{f - p}{\sqrt{\frac{pq}{N}}}$ suit une loi N(0,1) d'où on peut trouver un encadrement de f au risque de 5%, 1% ou autre.

Autre méthode



Une famille de paires de courbes (ou de tables) paramétrées par la taille N de l'échantillon et le risque de l'encadrement.

On trace la droite x = p (proportion dans la population). Elle coupe les courbes en 2 points d'ordonnée f1 et f2. On peut dire que

f1 < f < f2 au risque de r%.

On connait la fréquence et on nous demande la taille de l'échantillon pour précision de 5% au risque de 1% On a toujours $Z = \frac{f - p}{\sqrt{\frac{pq}{N}}}$ suit une loi N(0,1).

De l'encadrement –2,58 < Z < +2,58 on déduit p –2,58 $\sqrt{\frac{pq}{N}}$ < f < p +2,58 $\sqrt{\frac{pq}{N}}$

Et 2,58 $\sqrt{\frac{pq}{N}}$ doit être égal à 5% de p (écart maxi toléré) d'où on déduit n .

Loi du khi 2. Adéquation à une loi Homogénéité de 2 popul.	La population est répartie en k classes. Par exemple on lance un dé 90 fois et n(i) est le nombre de fois où on obtient la face i. (6 classes).	
Indépendance de 2 popul.	On calcule $\mathbf{Q} = \sum_{i=1}^6 \frac{(oi-ei)^2}{ei}$ avec oi valeur observée n(i) et ei effectifs théorique (ici	
	normalement 90 / 6 = 15 pour chaque classe). Le degré de liberté est le nombre de classes diminué du nombre de relation entre les classes. Ici K-1 puisque par exemple $n(6)=90-n(1)-n(2)-n3)-n(4)-n(5)$. Ensuite la table à 5 degrés de liberté nous donne les valeurs V que Q ne doit pas dépasser pour que l'adéquation ait 1 – r % de chances d'être mauvaise , Par exemple si la table donne V =11,07 et P = 0,05 cela signifie que si Q > 11,07 l'adéquation a 95% de chances d'être mauvaise.	
Estimateurs T de θ Θ = p, M, σ de la	Échantillon d'effectif n de fréquence f , de moyenne m , de variance V .	
population à partir de n , f,	f estimateur sans biais de p (proportion du caractère dans la population) m estimateur sans biais de M (moyenne de la variable aléatoire dans la population)	
m et V d'un échantillon. Sans biais si lim (T) = θ	$\mathbf{S^2} = \frac{n}{n-1}$ V est un estimateur sans biais de $\mathbf{\sigma^2}$ et donc $\mathbf{S} = \sqrt{\sum \frac{(Xi - m)^2}{n-1}}$ estimateur de $\mathbf{\sigma}$	
Loi de Student Déterminer l'intervalle de	Normalement Z = $\frac{m-E}{\frac{\sigma}{G_{cc}}}$ suit une loi normale centrée réduite mais on ne connait pas σ (qui	
confiance de l'espérance E d'une loi normale dont on	suit une loi du Khi2). La loi de Student donne pour un degré de liberté donné k et pour un risque r le nombre $S^k_{r/2}$ tel que $\mathbf{P}(\mathbf{Z} > S^k_{r/2}) < \mathbf{r/2}$ or cela équivaut (symétrie de la	
ne connait pas la variance.	loi et de la courbe densité par rapport à 0) à $P(m - \frac{\sigma}{\sqrt{n}}S_{r/2}^k) \le E \le m + \frac{\sigma}{\sqrt{n}}S_{r/2}^k) > 1 - r$	
	où on remplace $σ$ par son estimateur sans biais S	
Comparaison d'une moyenne m à une norme ou un seuil m ₀ .	On mesure 100 fois une longueur qui devrait être m0. On connait l'écart type σ des mesures m. Au risque de 5% ces mesures ont convenables si $m_0 - 1,96 \frac{\sigma}{\sqrt{100}} \leq m \leq m_0 + 1,96 \frac{\sigma}{\sqrt{100}}$	
Si N est assez grand pour une moyenne on utilise $N(m_0, \frac{\sigma}{\sqrt{N}})$	Si σ est inconnu on le remplace par son estimateur S et on utilise Student à n–1 degrés de liberté pour trouver l'encadrement $\mathbf{m0} - \frac{\sigma}{\sqrt{n}} S_{r/2}^k \le \mathbf{m} \le \mathbf{m0} + \frac{\sigma}{\sqrt{n}} S_{r/2}^k$	
Faute de connaitre σ on	Si N grand Student approchée par N (m0 , $\frac{\sqrt[n]{n}}{\sqrt{n}}$)	
utilise son estimateur sans bais S	On mesure 100 fois x. Peut -on dire que la moyenne m de x ne dépasse pas un seuil m_0 au risque de 1%? On estime $\sigma = S$ grâce à l'échantillon. Pour $N = 100$ inutile d'utiliser Student, on utilise $N(0,1)$ pour la variable centrée $\frac{m-m0}{\frac{S}{\sqrt{1-m}}}$.	
	Hypothèse acceptable si P(m > m0)< 1% soit $\frac{m-m0}{\frac{S}{\sqrt{100}}} \le 2,33$ soit m < m0 + 2,33 $\frac{S}{\sqrt{100}}$	
Comparaison d'une fréquence f à une norme un à un seuil p ₀ On utilise N(P ₀ , $\sqrt{\frac{p_0(1-p_0)}{N}}$)	N = 100 et le caractère λ est constaté 12 fois (f constatée = 0,12). Peut – on admettre que p = 1/6 au risque de 5% (comparaison à p0 = 1/6 = 0,17). Si l'on admet que la population suit une loi B(100 ; 0,17) on peut l'approcher par la loi normale N(0,17 ; 0,0375) et au risque de 5% on devrait avoir 0,17 – 1,96(0,0375) < f < 0,17 + 1,96(0,0375) soit 0,096 < f < 0,24 et comme f = 0,12 l'hypothèse est admissible.	
Comparaison de 2 échantillons.	Si Xi famille de variables aléatoires indépendantes chacune suivant une loi normale de moyenne mi et d'écart type σ i . Alors $\sum Xi$ suit $N(\sum mi$, $\sqrt{\sum \sigma i^2})$.	
Tendance et dispersion	On mesure une variable statistique x au sein d'une population. X prend 10 valeurs croissantes de X_0 à X_9 On range les individus selon la valeur de X dans des classes appelées X_0 à X_9 d'effectifs N_0 à N_9 regroupant 100 individus. La moyenne de X est $\sum \frac{X i N i}{100}$ Le mode est la valeur dont la classe a le plus grand effectif par exemple X_3 . La médiane C'est la classe Xp dans laquelle l'effectif cumulé $N_0 + N_1 + + N_0$ atteint la moitié de l'effectif global ici 50 . De la même façon les quartiles, déciles, etc. sont les classes où l'effectif cumulé atteint $1/4$, $1/10$ de l'effectif global La variance et l'écart type mesurent la dispersion de la série	
i		